

Undergraduate two-year programme in chemistry (CPI & Chem.I.St)

ECOLE NATIONALE SUPERIEURE DE CHIMIE DE RENNES SYLLABUS

ENSCR 11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

CPI and CHEM.I.ST programmes

The Integrated classes préparatoires (CPI) and the International CHEM.I.ST programme (CHEMistry International STudy) are for students who have obtained their scientific baccalaureate, and who are motivated by the jobs in chemistry and want to obtain an engineering diploma in Chemistry or Chemical Engineering

These classes, which have existed for more than **20 years in the city of Rennes**, present a **study programme which is more oriented towards chemistry**. The courses (in each of the two years of the CPI) run from September to June. The weekly workload is about 30 hours which is divided into **2/3 of scientific courses and 1/3 of non-scientific courses**.

These classes (CPI & CHEM.I.ST) of the Federation Gay-Lussac (FGL) offer:

- An engineering diploma in 5 years : 2 years in Rennes and 3 years in one of the 20 Schools of the FGL, entered without a competitive exam, only on **continuous assessment**,
- An excellent preparation for entry to the chemistry and chemical engineering schools
- An opening to the world by the practice of two foreign languages and also non-scientific disciplines
- A multicultural education through international classes.

One year corresponds to 60 ECTS-credits: a complete 2-year programme usually provides 120 ECTS-credits.

Table of contents

FIRST YEAR

SCIENTIFIC COURSES

Chemistry

Aqueous solutions	1
Basics of quantum chemistry	2
Chemical kinetics	3
Organic chemistry	4
Stereochemistry	5
Thermochemistry and redox reactions	6
Practical work	7

Physics

Electromagnetism	8
Mechanics	9
Modeling and geometrical optics	10
Thermodynamics	11
Practical work	12

Mathematics and Computer science

Matrices, lineal algebra, calculus	13
Calculus, logic, basis calculus	14
Computer-assisted mathematics and programming	15

HUMANITIES

Communication	16
Economics	17
Geopolitics and international opening	
English language Second foreign language:	19
Second foreign language: French (international students only)	
Second foreign language: German or Spanish	

METHODOLOGY

Methodology	23
-------------	----

ENSCR

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

SECOND YEAR

SCIENTIFIC COURSES

Chemistry

Chemical bonding	24
Crystallography.	25
Environmental chemistry	26
Infrared and ultraviolet-visible spectroscopies	27
Inorganic materials	28
Nuclear magnetic resonance (NMR)	29
Organic chemistry	30
Practical work in mineral chemistry	31
Practical work in organic chemistry	32

Physics

Electromagnetism	.33
Fluid mechanics	.34
Modern physics	.35
Waves	.36
Practical work	.37

Mathematics and Computer science

Mathematics	38
Computer science and programming	39

HUMANITIES

Communication	40
Economics	41
Ethics	.42
Geopolitics and international opening	.43
English language	44
Second foreign language: French (international students only)	45
Second foreign language: German or Spanish	.46

FIRST YEAR CPI-1 & CHEM.I.ST-1

ENSCR 11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Aqueous solutions

Course code: CC1SAQ1C/ CI1SAQ1C

Course coordinator(s): Guirec LE BOZEC /Paul LEDUCQ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st	2	30 h 40	16 h

Objectives	Knowing complexation and precipitation phenomena as well as acid-base phenomena in aqueous solution. Learning how to foresee an aqueous solution composition Mastering the method of dominating reactions			
Programme	Acid-base equilibria (acidity and basicity constants) Complexation and solubility constants Influence of complexation and precipitation on solutions pH Redox reactions, use in electrochemical energy conversion, Pourbaix diagram.			
Supporting literature	ENSCR duplicated lecture and instruction notes.			

Course: Basics of quantum chemistry

Course code: CC1ATO1C / CI1ATO1C

Course coordinator(s): Karine COSTUAS

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	1,50	12 h	5 h 20

Objectives	Introduction to quantum chemistry. Electronic structure of atoms		
Programme	The need for a new theory in physics: Introduction to quantum mechanics (Black body, photoelectric effect, diffraction of photons and electrons). Schrödinger equation of hydrogenoids. Electronic structure of atoms.		
Supporting literature	"Elements of physical chemistry" by P. Atkins, J. de Paula; ed; W. H. Freeman & Co.		

Course: Chemical kinetics

Course code: CC1CIN1C / CI1CIN1C

Course coordinator(s): Annabelle COUVERT

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	1,50	12 h	6 h 40

Objectives	To acquire knowledge on reaction kinetics, for homogeneous reactions, and particularly to learn how to determine kinetic law constants and orders, or activation energy of a reaction.
Programme	Rate laws. Formal kinetics. Experimental studies of kinetics.
	Upstream knowledge: homogeneous kinetics (level Bac+2), chemistry, mathematics (derivation, integration, differential equations).
Supporting	Introduction à la Cinétique Chimique – S. LOGAN - Dunod
literature	Cinétique Chimique – C. MOREAU, J-P. PAYEN - Belin
	Chimie générale pour ingénieur – C.K.W. FRIEDLI - Presses polytechniques et universitaires romandes
	Chimie générale – R. DIDIER - Tec & Doc
	Chimie générale – Structure de la matière (Exercices) – P. MORLAES, J-C. MORLAES – Vuibert

Course: Organic chemistry

Course code: CC10RGAG / CI10RGAC

Course coordinator(s): Vincent FERRIERES

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	1,50	12 h	8 h

Objectives	Lay the basis of organic chemistry:
	What is a covalent bond?
	Introduction to chemical reactivity.
Programme	From atoms to molecules: chemical bonding, physical chemistry.
	Properties and reactivity of alkanes.
	Properties and reactivity of alkenes.
Supporting	Chimie Organique - Cours
literature	P. Arnaud, 16 ^e Edition, Dunod Eds., 1996.
	Chimie Organique - Les grands principes
	J. McMurry, Dunod Eds., 2000.
	Introduction à la chimie organique
	Hart / Conia InterEdition 1997
	Chimie Organique Avancée
	E A Caroy D. L. Cundhara 26 Edition
	F. A. Carey, K. J. Sunaberg, 3° Edition,
	Deboeck Universite, 1997.

Course: Stereochemistry

Course code: CC1STERC / CI1STERC

Course coordinator(s): Audrey DENICOURT

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st	1,50	9 h 20	9 h 20

Objectives	To understand the basic knowledge of stereochemistry To identify stereogenic centers in organic molecules, To determine the absolute configuration (e.g. R or S) To classify types of stereoisomers (e.g. enantiomers, diastereoisomers, meso compounds)		
Programme	Space-filling models. Isomers. Conformational analysis. Configurational stereoisomery: Chirality, Absolute configuration (R or S), stereoisomer types (enantiomers, diastereoisomers, meso compounds), optical activity.		
Supporting literature	 Stereochemistry. D. G. Morris, Cambridge : Royal society of chemistry, 2001 Molécules chirales : stéréochimie et propriétés. A. Collet, J. Crassous, J.P. Dutasta, L. Guy, EDP sciences (Les Ulis,Essonne), 2006. Stéréochimie des composés organiques. E. L. Eliel, S. H. Wilen, Technique & Documentation (Paris), 1996 		

Course: Thermochemistry

Course code: CC1THECC / CI1THECC

Course coordinator(s): Guirec LE BOZEC

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st and 2 nd	5	44 h	24 h

Objectives	Knowing the role and interest of two thermodynamics principles applied to chemical transformations Applying the thermodynamics main functions to chemical systems Knowing the thermodynamic origin of equilibrium constants Knowing the theoretical origin of the Nerst equation Being able to predict general redox phenomena
Programme	Application of the first principle to chemistry (Kirchhoff law, flame temperature, reaction heat) Application of the second principle to chemistry. Systems equilibrium and evolution Oxydoreduction theory and applications (Nernst equation, batteries and accumulators, corrosion phenomena)
Supporting literature	ENSCR duplicated lecture and instruction notes.

Course: Practical work in chemistry

Course code: CC1TPCHP / CI1TPCHP

Course coordinator(s): Guirec LE BOZEC, Paul LEDUCQ

Assessment details: Practical project work

Year	Semester	Coefficient	Number of hours
			Practical work
1 st	1 st and 2 nd	5	56 h

Objectives	Mastering usual laboratory techniques (preparations, titrations, dilutions). Knowing analytical and synthetic methods in an aqueous milieu. Implementing a chemical kinetic study. Finalizing an experimental protocol. Knowing security rules and procedures in the laboratory.
Programme	Titration methods. Experimental studies of acidobasic, precipitation, complexation and redox equilibria. Follow-up of first and second order kinetics. Experimental aspects of colorimetry, pH-metry, conductivity, potentiometry, spectrophotometry
Supporting literature	ENSCR duplicated lecture and instruction notes.

Course: Electromagnetism

Course code: CI1PHY2M- CC1PHY5M

Course coordinator(s): Julien GEANDROT / Jimmy ROUSSEL

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	3	22 h 40	22 h 40

Objectives	Understanding the basics of electric and magnetic fields. Determining the effects of electromagnetic induction on circuits. Predicting the behaviour of electrical circuits.
Programme	Electric charge and Coulomb's law. Electrostatic field and potential. Electrostatic field flux. Electrostatic potential energy. Electrostatic conductors. Magnetic field created by current. Lorentz and Laplace forces. Particle in motion in an electromagnetic field. Induction. Circuit elements. Electrical circuit. Transitional regime. Sine regime.
Supporting	Tout-en-un Physique PCSI, Marie-Noëlle Sanz, Anne-
literature	Emmanuelle Badel, François Clausset - Editions Dunod
	2008
	"Précis Électromagnétisme PCSI" – P.Krempf – Bréal
	http://physique.ensc-rennes.fr/

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Mechanics

Course code: CI1PHY2M- CC1PHY5M

Course coordinator(s): Julien GEANDROT / Jimmy ROUSSEL

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st	3	22 h 40	22 h 40

Objectives	Study two-dimensional problems Study of practical problems in classical mechanics Being able to understand the modeling of real situations Using different coordinate systems : Cartesian or polar		
Programme	Dimensions and units. Vector tools. Kinematics. Fundamental principle of the dynamics. Energetics. Mechanical oscillators. Simple motion of a rigid body. Torque, kinetic moment theorem. Central forces. Non-inertial reference frames. Shocks.		
Supporting literature	Tout-en-un Physique PCSI, Marie-Noëlle Sanz, Anne- Emmanuelle Badel, François Clausset - Editions Dunod 2008 "Précis Mécanique PCSI" - C.Clerc - P.Clerc – Bréal http://www.physagreg.fr/		

Course: Modeling and geometrical optics

Course code: CI1PHY2M- CC1PHY5M

Course coordinator(s): Julien GEANDROT / Jimmy ROUSSEL

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st	2	13 h 20	13 h 20

Objectives	First of all, we introduce tools and methods of the scientific approach especially for practical activities. Then we bring back to mind basic knowledge of geometrical optics to deal with theoretical and experimental physics in higher education.
Programme	Scientific approach. Uncertainties. Model and domain of validity. Verification of a law. Geometrical optics. Descartes' laws. Fermat's principle. Thin lenses. Application : some optical instruments.
Supporting literature	Optique. J-P Faroux, J. Renault. Paris, Ed. Dunod Optique géométrique et optique physique. J-P~Parisot, P.~Segonds, S~Le Boiteux. Paris, Ed. Dunod. Web : http://www.physagreg.fr/ http://www.femto-physique.fr/optique_geometrique/

Course: Thermodynamics

Course code: CC1THEPC / CI1THEPC

Course coordinator(s): Paul LEDUCQ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	2	13 h 20	13 h 20

Objectives	Knowing how to study the energy exchange processes between systems (work and heat transfer) Knowing the main thermodynamic functions (internal energy, enthalpy, entropy) Knowing the two thermodynamics principles and applying them to the thermo-elastic transformations of gas and condensed phases		
Programme	First principle of thermodynamics. Second principle of thermodynamics. Thermodynamic study of real and perfect gases. Thermodynamic cycles Thermal transfer and phase transitions Spontaneous evolution of physical systems		
Supporting literature	ENSCR duplicated lecture and instruction notes.		

Course: Practical work

Course code: CC1ELMAC / CI1ELMAC

Course coordinator(s): Julien GEANDROT / Jimmy ROUSSEL / Jelena JEFTIC

Assessment details: Practical project work

Year	Semester	Coefficient	Number of hours
			Practical work
1 st	1 st and 2 nd	4	40 h 20

Objectives	Use Uncertainties.				
	Use measure in order to verify a physic law.				
Programme	Thermodynamics : pressure and temperature law, calorimetry				
	Optics : convergent and divergent lenses, telescope, eye				
	Electromagnetism : earth magnetic field, electric field				
	Electricity : oscilloscope and GBF manipulation, filters, current sources, linear component				
	Mechanics : moment of force, Centrifugal force, oscillators				
Supporting literature	https://physique.ensc-rennes.fr				

Module: MATHEMATICS

Course: Matrices, linear algebra, calculus

Course code: CC1ALG1C / CI1ALG1C

Course coordinator(s): Pierre-Vincent QUERE / Philippe MORVAN

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	2 nd	5,25	40 h	40 h

Objectives	Introduce matrix calculus and linear algebra. Practice analysis with new efficient tools.
Programme	Linear Systems. Matrices. Determinants. Linear Algebra: linear spaces and mappings in n dimension. Integral calculus. Taylor's formulas & Taylor Series.
Supporting literature	<u>Marie Allano-Chevalier</u> , <u>Xavier Oudot</u> : "Maths - PCSI-PTSI - 1ère année" - Collection H-Prépa [Hachette]
	"Mathématiques : Cours de première année" : http://exo7.emath.fr/cours/cours-exo7.pdf

Module: MATHEMATICS

Course: Calculus, logic, basic calculus

Course code: CC1ANA1C / CI1ANA1C

Course coordinator(s): Philippe MORVAN / Pierre-Vincent QUERE

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
1 st	1 st	5,25	40 h	40 h

Objectives	Review the achievements of secondary school. Extend and improve calculus skills for Physics and Chemistry teachings. Introduce logic and algebra new formalism.
Programme	Mathematical methods for physics and chemistry: equations and inequations, geometry and trigonometry, differential equations of first & second order, elementary functions. Complex numbers. Logic. Natural numbers and polynomials. Real numbers. Sequences. Differential calculus (one variable).
Supporting literature	<u>Marie Allano-Chevalier</u> , <u>Xavier Oudot</u> : "Maths - PCSI-PTSI - 1ère année" - Collection H-Prépa [Hachette] "Mathématiques : Cours de première année" : http://exo7.emath.fr/cours/cours-exo7.pdf

Module: COMPUTER SCIENCE

Course: Computer-assisted mathematics and programming

Course code: CC1MAO2P / CI1MAO2P

Course coordinator(s): Pierre-Vincent QUERE

Assessment details: Practical project work / written assessment

Year	Semester	Coefficient	Number o	of hours
			Practical	Tutorial
			work	
1 st	1 st and 2 nd	2,50	16 h	4 h

Objectives	Use of the software Sage to solve mathematical problems along the year.
Programme	Introduction to basic concepts of programming language: types, variables, iteration structures, conditional statements. Basic procedures
Supporting literature	Calculs mathématiques avec Sage (Casamayou & al., 2013).

Course: Communication (CPI)

Course code: CC1EXPRC

Course coordinator(s): Stéphanie GUILLOUX

Assessment details: Written assessment / project report

Year	Semester	Coefficient	Number of hours
			Lecture
1 st	1 st	1,5	21 h 20

Objectives	To build a professional project.		
	To be able to write and adapt a cv		
	To be able to analyze job expectation		
	To experiment professional interview		
	Analyzing personal path and traducing it as competencies		
Programme	Building professional expectation		
	Analyzing organization		
	Writing a resume and cover letter.		
	Experimenting interview		
Supporting literature	Available on request.		

Course: Economics (CPI)

Course code: CC1ECONC

Course coordinator(s): Frédérique PERGOLA

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours
			Lecture
1 st	2 nd	1,5	21 h 20

Objectives	To acquire basic economic concepts.
Programme	The firm in its environment : goods and services, factors of production, costs, revenue and profit. The economic growth : added value, GDP and business cycle Macroeconomics : Monetary and fiscal policy
Supporting literature	Available on request.

Course: Geopolitics and international openness

(Chem.I.st)

Course code: CI1OUINC

Course coordinator(s): Marianne BLACHE

Assessment details: Written assessment /project report

Year	Semester	Coefficient	Number of hours
			Lecture
1 st	1 st and 2 nd	3	42 h 40

Objectives	Students must understand the principe of geopolitics questions and their importance in internationals relations. The lessons present general approach and different questions to illustrate this theme.		
Programme	Definition and global view of international challenges. 1/-Introduction of the Geopolitics 2/-Occident and the global menaces (economic tensions,) 3/-Geopolitics of the United States 4/-The question of Middle East 5/-Geopolitics of Israel 6/-Space and international Relations 7/-Water's Geopolitics : economic and social questions, and subject of conflict between states 8/-Africa : Characteristic of the continent and geopolitics tensions		
Supporting literature	Available on request.		

18

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: English

Course code: CC1ANGLD / CI1ANGLD

Course coordinator(s): Pierre BRIEND / Marcel VIDELO

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
1 st	1 st and 2 nd	5	56 h

Objectives	Improvement of the students' linguistic acquisition and communication competence Cultural and civilizational enrichment		
Programme	Society issues International (geo)politics General science and technology questions Oral presentations		
Supporting literature	Resources of the internet (press articles, radio and TV programmes).		

Course: French as a foreign language (international students only)

Course code: CI1EFLED

Course coordinator(s): Virginie VIGNERON / Anne BERNIER/ Pierre BRIEND

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
1 st	1 st and 2 nd	5	86 h 40

Objectives	Acquire and master linguistic tools to communicate easily and efficiently in familiar situations (study, home, work, leisure activities)				
	Develop skill in oral and written expression and comprehension.				
	Learn more about French culture and society				
Programme	Comprehension activities with authentic materials. Training of oral (presentations, discussions, debates) and written expression Grammar, vocabulary and pronunciation exercises				
Supporting literature	Available on request. Book used in the classroom: Totem 3, Hachette				

Course: German

Course code: CC1ALMDD / CI1ALMDD

Course coordinator(s): Gisela HAUER

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
1 st	1 st and 2 nd	5	56 h

Objectives	To give the linguistic tools To develop abilities in verbal and written expression and communication.		
Programme	 -the main topics are based on media language occuring prominently in everyday life. -other themes approached in the first and second academic years are chosen in the light of their topicality and in the light of current interests, students' suggestions or work on a recent film. 		
Supporting	Cormon toophing upon outbontin documents and documents		
literature	adapted for students:		
	http://www.dw.de/deutsch-lernen/top-thema/s-8031 http://www.goethe.de/		

Course: Spanish

Course code: CC1ESPAD/ CI1ESPAD

Course coordinator(s): Antonieta ORE / Luis Miguel GONZALEZ

Assessment details: Written and oral assessment

Year	Semester	Coefficient Number of hour	
			Tutorial
1 st	1 st and 2 nd	5	56 h

Objectives	To give linguistic tools To develop abilities in verbal and written expression and communication. To increase autonomy in the language.
Programme	 -the main topics are based on media language occuring prominently in everyday life. -other themes approached in the first and second academic years are chosen in the light of their topicality and in the light of current interests, students' suggestions or work on a recent film.
Supporting literature	The main Hispanic newspapers (El Pais, El Mundo, La Vanguardia, El Clarín, El Comercio, El Mercurio etc.) as well as the Spanish version of the BBC. The television channels RTVE, Antena 3. For Spanish grammar our reference is 'Real Academia Española'.

Module: METHODOLOGIE

Course: Learning how to learn

Code: CC1METHD

Course coordinator(s): Amélie JOSSE / Annick TARTIERE

Assessment details : no exam

Year	Semester	Number of hours
		Lecture
1 ^{ère}	1 ^{er}	5 h 20

	Mativeties and exclanging a structure as			
Objectives	Short term memory			
	Short term memory			
	Long term memory and work organization Stress management			
	Stress management			
Programme	Origins of motivation			
_	Motivation techniques in studies			
	Understanding the function of short term memory in order to			
	improve your note-taking.			
	Understand interactions between attention and working			
	memory			
	Understanding the function of long term memory to store			
	information.			
	Organizing knowledge to be able to use efficiently			
	Work planning tools			
	Understanding and preventing stress			
	Boost your self-confidence			
	Stimulate your concentration skills			
	Exam preparations			
Supporting	lain Lieury « motivation et réussite scolaire », 3ème édition			
literature	Broché – 5 juin 2013			
	« Votre mémoire : Bien la connaître mieux s'en servir »			
	Broché – 30 jujn 2004			
	Le cerveau attentif LP Lachaux édition Odile Jacob			

SECOND YEAR CPI-2 & CHEM.I.ST-2

ENSCR 11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Chemical bonding

Course code: CC2ATLCC / CI2ATLCC

Course coordinator(s): Mikael KEPENEKIAN

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	2	16 h	6 h 40

Objectives	Chemical bonding in molecules.			
Programme	Covalent bonds: VSPER and hybrid atomic orbital models to determine the geometries of molecules. The quantum nature of the covalent bonding: Electronic structure of sma molecules. Ionic bonds.			
Supporting literature	"An introduction to molecular orbitals" Y. Jean, F. Volatron, J. K. Burdett, OUP USA.			

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Crystallography

Course code: CC2INORC/ CI2INORC

Course coordinator(s): Jelena JEFTIC

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	2	16 h	8 h

Objectives	Gain the basic knowledge in Cristallography in order to be able to attend the courses in Crystallochemistry and Inorganic Chemistry in the engineering cycle of Chemistry studies.
Programme	The crystalline solid. Crystalline state. Basic concepts of crystallography (network, knot, primitive cell, crystal system, Bravais lattice). Symmetry (symmetry operations, point group). Metallic crystals. Metallic characteristics, metallic bonding, stereochemistry of metallic crystals (packing efficiency in hcp and ccp structures). Ionic crystals. Stereochemistry of ionic crystals <i>CsCl, NaCi,</i> sphalerite, fluorite). Covalent crystals. Molecular crystals : ice. The true crystal.
Supporting literature	M. Van Meersche, J. Feneau-Dupont "Introduction à la Cristallographie et à la Chimie Structurale" Edition Peeters, 1984, Paris.
	Alain Pénicaud « Les cristaux, fenêtres sur l'invisible », Edition Ellipses, 1999, Paris.

Course: Environmental chemistry

Course code: CC2CHENC/ CI2CHENC

Course coordinator(s): Pierre LE CLOIREC

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours
			Lecture
2 nd	2 nd	1	9 h

Basic concepts in environment and water treatments.
The hydrologic cycle. The carbon cycle, nitrogen cycle, the phosphorus cycle, the sulfur cycle. Interaction of various cycles.
Water treatments – Principle and design of some drinking water treatment processes.
F. Ramade (2007), Introduction à l'écotoxicologie, Tec & Doc, Lavoisier, Paris
P.H. Raven, L.R. Berg, D.M. Hassenzahl (2009), Environment, De Boeck, Bruxelles
L. Siggs, Ph. Behra, W. Stumm (2006), Chimie des milieux aquatiques, Dunod, Paris, 4 ^{ème} Edition
J.M. Montgomery (1985), Water treatment Principles and Design, John Wiley & Sons, New York, NY, USA
S.R. Qasim, E.M. Motley, G. Zhu (2000), Water works engineering, Prentice Hall, Upper Saddle River, NJ, USA.

Course: Infrared and ultraviolet-visible spectroscopies

Course code: CC2SPECC/ CI2SPECC

Course coordinator(s): Didier HAUCHARD

Assessment details: Written assessment

Year	Semester	Coefficient	Number o	of hours
			Lecture	Tutorial
Ond	Ond			0 1 40
Zna	Ziid	1,5	10 h 40	6 h 40
Ohiostivas	A aquiaition of	lun que dans in stamis		actropopias
Objectives	To become fa their applications a spectroscopie	amiliar with different sp on perimeter. To unde and spectra interpretat es.	and molecular spo pectroscopic techr erstand particularly ion in Infrared and	actroscopies. hiques and y principles, d UV/Visible
Programme	Introduction of techniques. E with matter. I ICP, fluoresco spectroscopie electromagne examples). Spectroscopie Ultraviolet-vis Chromophore conjugation a analysis, cher Infrared spect Theory of IF spectra in re interpretation cells, samples	spectroscopies. Introduction of general concepts of spectroscopic methods a techniques. Electromagnetic radiation and Interaction of radiat with matter. Description of different types of atomic (AAS, EA ICP, fluorescenceX) and molecular (UV/visible, Fluorescence, spectroscopies based on absorption or emission electromagnetic radiations (principles, applications, equipme examples). Spectroscopic methods in detailed : Ultraviolet-visible spectroscopy. Chromophores and electronic transition, solvent and pH effect conjugation and empiric rules for organic compounds, quantitat analysis, chemical constant determination, apparatus Infrared spectroscopy. Theory of IR absorption and molecular vibration modes. spectra in relation with molecular structure. Identification a interpretation of IR absorption bands. Applications (apparat		methods and in of radiation c (AAS, EAS, rescence, IR) emission of s, equipment, d pH effects, s, quantitative an modes. IR tification and s (apparatus,
Supporting literat	t ure M. Hessen H. chimie organi J.L. Buraot et	Meier, B. Zeeh "Méth c", Masson, Paris, 199 G. Burgot "Méthodes	odes spectroscop 95. instrumentales d'	oiques pour la
	chimique et a	pplications", Tec&doc	, Lavoisier, 3 ^{ème} e	dition, 2011.

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Inorganic materials

Course code: CC2INORD/ CI2INORD

Course coordinator(s): Eric LE FUR

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	2 nd	1,5	9 h 20	5 h 20

Objectives	Knowing the different classes of materials (metals and alloys, ceramics, polymers). Having knowledge's in structural aspects of alloys and ceramic materials. Knowing some uses of materials detailing structure- properties relationships.
Programme	Crystal structure of metals (body centered cubic, hexagonal close paked, face centerd cubic) and ceramics (rock salt, caesium chloride, zinc blende,) Structural approach of metals and alloys (polymorphism, solid solution, alloys) Structure-properties relationships in ceramics (lithium batteries materials, anionic conducting ceramics). Crystal defects
Supporting literature	Chimie physique, Paul Arnaud 6ième édition, DUNOD

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Nuclear magnetic resonance (NMR)

Course code: CC2SPECD/ CI2SPECD

Course coordinator(s): Thierry BENVEGNU

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	1	6 h 40	8 h

Objectives	This course is designed to introduce the techniques of both ¹ H and ¹³ C NMR spectroscopy as powerful tools for structure elucidation in organic chemistry. A brief introduction to the principles of NMR spectroscopy will be followed by extensive analysis and discussion of NMR parameters such as chemical shift, coupling constants, splitting patterns, etc. NMR (¹ H and ¹³ C) spectral interpretation to characterize and/or to elucidate the chemical structure of molecules will be studied in details.
Programme	The principle of NMR spectroscopy. Proton ¹ H NMR: chemical shift, integration, chemical equivalence, spin coupling interaction, (n + 1) rule of multiplicity, chemical shift non equivalence, spectral interpretation). Carbon-13 NMR (resolution, multiplicity, spin decoupling, off-resonance decoupling, NOE, DEPT, structural applications, spectral interpretation).
Supporting literature	1. Modern NMR Spectroscopy: a Guide for Chemists / Jeremy K.M. Sanders and Brian K. Hunter ISBN: 0198555660: 0198555679 (pbk.). 2. Spectroscopic Methods in Organic Chemistry / Dudley H. Williams, Ian Fleming. ISBN 0077091477 (pbk). 3. NMR Spectroscopy by Roger S. Macomber. 4. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications and Experimental Methods by Lambert and Mazzola. ISBN 0-13-089066-9 (Prentice Hall). 5. Spectroscopic Identification of Organic Compounds by Silverstein, Webster, Kimble and Kimble. ISBN 0471393622.

Course: Organic chemistry

Course code: CC2CHORC/ CI2CHORC

Course coordinator(s): Christophe CREVISY / Alain ROUCOUX

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st and 2 nd	5	37 h 20	22 h 40

Objectives	Overview on organic functional groups and their reactivity. Understanding the reaction and the properties of various families of organic compounds. Explaining the main mechanisms of organic chemistry reactions.
Programme:	Presentation of the properties and the reactivity of the major functions of organic molecules and description of the reaction mechanisms: Unsaturated hydrocarbons (alkenes, alkynes), aromatic chemistry (aromaticity, reactivity), halides (Nucleophilic Substitution & Elimination reactions), organometallic compounds (Li & Mg), oxygen containing molecules (alcohols and carbonyl derivatives), amines, carboxylic acids and derivatives
Supporting literature:	Traité de chimie organique, K. Peter C. Vollhardt, Neil Eric Schore (Ed) De Boeck Supérieur, 2004 http://chimiegenerale.org/Textes/Orga/TableMat.html

Course: Practical work in mineral chemistry

Course code: CC2TPGMP/ CI2TPGMP

Course coordinator(s): Eric LE FUR / Jean-Yves PIVAN / Nicolas BRANEYRE/ Thierry BATAILLE

Assessment details: Practical project work

Year	Semester	Coefficient Number of hours	
			Practical work
2 nd	1 st and 2 nd	2	24 h

Objectives	Practical applications of theoretical knowledge acquired during undergraduate program.
Programme	Chlorine/caustic soda process, gravimetric analysis, a kinetic study of competitive reactions, silver recovery from radiographic films, synthesis and characterization of cobalt complexes.
Supporting literature	Lab handout.

Course: Practical work in organic chemistry

Course code: CC2TPORP/ CI2I TPORP

Course coordinator(s): Audrey DENICOURT / Thierry BENVEGNU /Sylvain TRANCHIMAND

Assessment details: Practical project work

Year	Semester	Coefficient Number of hour	
			Practical work
2 nd	1 st and 2 nd	4	48 h

Objectives	To be able to overcome experimental techniques of organic synthesis.To be able to implement the synthesis of an organic compound, to work-up the reaction mixture and to purify the resulting product.To respect the safety rules.	
Programme	 Fractional distillation, Liquid-liquid extraction, Recrystallization, Thin Layer Chromatography (TLC) Organic syntheses: esterification, Grignard synthesis, oxidation, aldolisation, chlorination, aromatic electrophilic substitution Analytical techniques in organic chemistry (NMR, IR, TLC, GC). 	
Supporting literature	Films available on the e-formation website (ENSCR).	

Course: Electromagnetism

Course code: CC2ELMAC/ CI2ELMAC

Course coordinator(s): Olivier FRANTZ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	3	21 h 20	21 h 20

Objectives	Using Maxwell's equations to study the propagation of electromagnetic waves in various environments. Establishing a model for describing dielectric or magnetic materials.
Programme	Maxwell's equations. Dielectric materials. Polarization origins. Magnet environments. Paramagnetism and diamagnetism. Ferromagnetism. Electromagnetic waves in vacuum. Planewaves. Metallic reflexion. Standing waves. Electromagnetic waves in dielectric medium.
Supporting literature	Physique des Ondes, électromagnétisme et optique, Stéphane Olivier, Tec&Doc Électromagnétisme, fondements et applications, José Philippe Pérez, Dunod

Course: Fluid mechanics - transport phenomena

Course code: CC2MEFLC/ CI2MEFLC

Course coordinator(s): Olivier FRANTZ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	2 nd	3	21 h 20	21 h 20

Objectives	Introduce principles of fluid mechanics and transport phenomena. Use dimensional analysis and orders of magnitude estimations of some usual macroscopic situations. Learn how to perform mass, moment and energy balance.
Programme	Fluids at rest, static pressure, hydrostatic equation, buoyancy. Surface tension, capillarity. Dynamics of ideal fluids. Equation of continuity, Euler equation, Bernoulli equation. Newtonian Fluids dynamics: Viscosity, Navier-Stokes equation, Reynolds number, Poiseuille's formula, Pressure loss, Moody friction flow factor, Stokes' Formula, lift and drag. Fick's laws of diffusion, statistical approach. Heat transfer, conduction, convection, radiation. Thermal resistance. Energy balance equation.
Supporting literature	L.Couture, Ch. Chahine and R. Zitoun. Thermodynamique. ed. Dunod. Paris, 1989. Les techniques de l'ingénieur. Paris, France http://www.femto-physique.fr/

Course: Modern physics

Course code: CC2PHSTC/ CI2PHSTC

Course coordinator(s): Jimmy ROUSSEL/ Olivier FRANTZ/ Paul LEDUCQ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	2 nd	2	16 h	16 h

Objectives	Introduce phenomena and / or concepts of physics discovered in the twentieth century.
Programme	 Black body radiation and application to sciences of the Universe. Statistical thermodynamics and the Boltzmann law. The link between the macroscopic universe and the microscopic universe. Principle of the laser and applications. Doppler effect and applications Introduction to physics of semiconductors. elements of electronics.
Supporting literature	 H. Benson. Physique 3 : Ondes, Optique et Physique Moderne, Editor De Boeck, 2005, Bruxelles. F. Bretanaker et N. Treps. Le laser, coll. Une introduction à, EDP sciences, 2010 S Houard. Optique - une approche expérimentale et pratique, DeBoeck. D. angoisse et al. Les lasers, Dunod. B. Diu et al. Eléments de physique statistique. Hermann 1989.

Course: Waves

Course code: CC2OPTIC/ CI2OPTIC

Course coordinator(s): Olivier FRANTZ

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	2	16 h	16 h

Objectives	Mastering the wave properties of light. Exploiting a diffraction pattern. Understanding the vectorial nature of light to explain birefringence, polarizer or waveplates.
Programme	Physical optics. Interference. Diffraction. Networks. Vectorial waves.
Supporting literature	Optique, fondements et applications, José-Philippe Pérez.

Course: Practical work in physics

Course code: CC2TPPHP/ CI2TPPHP

Course coordinator(s): Jimmy ROUSSEL/ Olivier FRANTZ /Julien GEANDROT

Assessment details: Practical project work

Year	Semester	Coefficient Number of hours	
			Practical work
2 nd	1 st and 2 nd	3	30 h

ractical activities to develop :
lodeling and analyzing phenomena; "scientific attitudes", uch as skepticism, rationalism and objectivity; ability to ommunicate.
etermination of refractive index of a glass with a oniometer roperties of grating. eelerity of light measurement. raunhoffer diffraction. relerity of Acoustic waves. ome properties of Hertzian waves. tudy of polarization and measurement of optical rotation throduction to Fourier analysis leasurement of viscosity apillarity luid mechanics: Bernoulli relation and Venturi effect. etermination of the specific charge of the electron. kin effect in a coil.
uffait, R. Expériences de physique CAPES de sciences
nysiques, 2008 Editeur: Breal.
vnárimentale
ttp://physique.ensc-rennes.fr

Module: MATHEMATICS

Course: Mathematics

Course code: CC2ALG2C/ CI2ALG1L

Course coordinator(s): François DEBURGHRAEVE

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	Tutorial
2 nd	1 st	5	40 h	40 h

Objectives	Gain the basic knowledge in Mathematics in order to be able to attend the courses in the engineering cycle of Chemistry studies.
Programme	Linear algebra
	Reduction
	Integration
	Series
	Functions of several variables: differential calculus
	Probabilities
Supporting literature	None.

Module: COMPUTER SCIENCE

Course: Computer science and programming

Course code: CC2PRG1P/ CI2PRG1P

Course coordinator(s): Philippe MORVAN / Pierre-Vincent QUERE

Assessment details: Practical project work

Year	Semester	Coefficient	Number of hours		
			Lecture	Tutorial	Project
2 nd	1 st and 2 nd	3	12 h	28 h	20 h

Objectives	The aim of this class is to introduce students with no prior knowledge to the basis of programming using Python and Sage.	
Programme	Introduction to computer science and programming: history, programming languages, algorithmics, program structures. Python basis: using Python, variables & types, conditional statements, loops. Procedural programming. Recursion notions. Debugging procedures. Write or read files. Introduction to Oriented Object Programming & GUI Programming. Practical work and project (for 4 students) applied to solve problems in mathematics, physics or chemistry.	
Supporting literature	Any Python book for beginners + Philippe Morvan : "Introduction à la programmation avec Python" [ENSCR - 2015]	

11, allée de Beaulieu - CS 50837 - 35708 Rennes Cedex 7 Tél. : (33) 02 23 23 80 00 - Fax : (33) 02 23 23 81 99 - www.ensc-rennes.fr

Course: Communication

Course code: CI2EXPRC / CC2EXPRC

Course coordinator(s): no coordinator

Assessment details: Oral assessment / project report

Year	Semester	Coefficient	Number of hours	
			Lecture	
2 nd	2 nd	1,5	21 h 20	

Objectives	To be able to prepare a job interview. To be able to understand relationships inside organization To understand group dynamic To acknowledge chemical industries' job	
Programme	Workshop on professional project Exercises of cross interviews Investigation on organizations' structure and culture Analyzing involvement at work and group dynamic through films and role plays Experimenting an interview with someone working in chemical industry	
Supporting literature	Available on request.	

Course: Economics (CPI)

Course code: CC2ECONC

Course coordinator(s): Frédérique PERGOLA

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	
2 nd	1 st	1,5	21 h 20	

Objectives	To acquire basic economy concepts.
Programme	Sources of economic growth The Great Recession Sustainable development
Supporting literature	Available on request.

Course: Ethics (CPI)

Course code: CC2ETHIC/CI2ETHIC

Course coordinator(s): Lise MAILLARD

Assessment details: Written assessment

Year	Semester	Coefficient	Number of hours	
			Lecture	
2 nd	2 nd	1	9 h 20	

Objectives	To understand the behaviors and rules in the industry		
	To introduce concepts of ethics in the enterprise		
Programme	What is ethics? Financial ethics, professional ethics, enterprise ethics		
	Importance of human values		
Supporting literature	Available on request.		

Course: Geopilitics and international openness

Course code: CI2OUINC

Course coordinator(s): François PRIGENT

Assessment details: Written assessment / project report

Year	Semester	Coefficient	Number of hours	
			Lecture	
2 nd	1 st	1,5	21 h 20	

Objectives	Students are informed about major questions of international politics and geopolitics tensions in a multicolor reflexion.
Programme	Major geo-political tension areas. Geopolitic of Sahara-Sahel Geopolitic of Russia Geopolitic of China Geopolitic of United States Study case on a conflict in Middle-East
Supporting literature	Available on request.

Course: English

Course code: CC2ANGLD / CI2ANGLD

Course coordinator(s): Pierre BRIEND / Marcel VIDELO / Roger CONAN/ Anne-Florence MOLLOV

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours	
			Tutorial	
2 nd	1 st and 2 nd	5	56 h	

Objectives	Consolidation of linguistic and cultural acquisitions	
	Improving oral performance	
Programme	Humour across the world	
	Le SIDA et la société	
	Etude des pays émergents (l'Inde, L'Afrique du Sud …)	
	Film study (example: "Invictus")	
	Oral presentations (free topics)	
Supporting literature		
	Resources of the Internet	
	Teacher-produced materials	

Course: French as a foreign language

Course code: CI2EFLED

Course coordinator(s): Mélanie TRONEL JEULAND

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
2 nd	1 st and 2 nd	5	56 h

Objectives	To give the linguistic tools	
	To develop their abilities in verbal and written expression and communication.	
Programme	This course is considered as the continuation and progression of the first and second semesters.	
	Like during the first academic year, French-teaching makes use of authentic documents	
	Topics: socio-cultural themes approached in the second academic year are chosen in the light of their topicality and in the light of the interests or suggestions of students.	
Supporting	http://orthonet.sdv.fr	
merature	www.le pointdufle.net	
	http://www.flevideo.com	
	http://www.lapressedefrance.fr	

Course: German

Course code: CC2ALMDD / CI2ALMDD

Course coordinator(s): Gisela HAUER

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
2 nd	1 st and 2 nd	5	56 h

Objectives	To give the linguistic tools	
	To develop their abilities in verbal and written expression and communication.	
Programme	This course is considered as the continuation and	
	progression of the first and second semesters and based on	
	the use of authentic documents.	
	Topics: socio-cultural themes approached in the second	
	academic year are chosen in the light of their topicality and	
	in the light of the interests or suggestions of students.	
	1	
Supporting literature	German teaching uses authentic documents and documents adapted for students.	
	http://www.dw.de/deutsch-lernen/top-thema/s-8031 http://www.goethe.de/	

Course: Spanish

Course code: CC2ESPAD/ CI2ESPAD

Course coordinator(s): Antonieta ORE / Luis Miguel GONZALEZ

Assessment details: Written and oral assessment

Year	Semester	Coefficient	Number of hours
			Tutorial
2 nd	1 st and 2 nd	5	56 h

Objectives	To give the linguistic tools
	To develop their abilities in verbal and written expression and communication.
Programme	This course is considered as the continuation and
	progression of the first and second semesters and based on
	the use of authentic documents.
	Topics: socio-cultural themes approached in the second academic year are chosen in the light of their topicality and in the light of the interests or suggestions of students.
Supporting literature	Spanish teaching uses authentic documents and documents adapted for students.

