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Electronic Structure of Solid Materials: Basic Concepts 

The electronic structure of solids (1D, 2D or 3D) 
is usually discussed in terms of band theory 

Solid materials ≡ Periodic solids 



 
 
 

Orbitals and Bands in One Dimension 

  

   The ’’molecular’’ approach: Linear Hn oligomers (n = 1, N ~ 1023) 
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Bloch Functions, Crystal Orbitals and Band Structures 

H H H H H H H H
a

   The ’’solid state’’ approach: Infinite chain of equidistant H atoms 

j 
direct lattice 

reciprocal lattice " " "" "

0        1         2        3         4 

a* 
a* = 2π/a 

-π/a  0 π/a 

   where:  k = index (wave vector, vector belonging to the reciprocal lattice) 
            Rj = ja (j, integer varying from -∞ to +∞) 
  χj = 1s(Hj) 

Bloch orbital (function):     φ(k) α Σ [exp(ikRj) . χj(r - Rj)] 
                     j 

j can vary from -∞ to +∞ 
. . .-∞ +∞



Bloch Functions, Crystal Orbitals and Band Structures 

Thus, the  study of the function E(k) = f(k) can be restricted to the interval:    0 ≤ k ≤ π/a 
(Irreducible part of the first Brillouin zone) 

φ(k)             E(k) 

φ(k) α Σ exp(ikja) χj 
                 j                                                                        

E(k) = f(k) 
Periodical function in the reciprocal space (period = 2π/a) 

 φ(k) and φ(-k) are degenerate, i.e. E(k) = f(k) is a centrosymmetrical function  

" " "" "

a* 
-π/a  0 π/a 

reciprocal lattice a* = 2π/a 

j 

direct lattice 



Bloch Functions, Crystal Orbitals and Band Structures 

j:  0     1      2      3 

Bloch orbitals in the first Brillouin zone (0 ≤ k ≤ π/a) 

k = 0 

k = π/a 

φ(0) α Σ exp(ikja) χj = Σ exp(0) χj = Σ χj =  
                  j                                     j                                j 

φ(π/a) α Σ exp(ikja) χj =Σ exp(iπj) χj = Σ (-1)j χj =  
                      j                            j                            j 

Band structure: E(k) = f(k) for 0 ≤ k ≤ π/a 

φ(k)             E(k) and φ(-k)             E(k) 

" " "" "

a* 
-π/a  0 π/a 



Bloch Functions, Crystal Orbitals and Band Structures 
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Hückel approximation

H H H-H

Overlap considered
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Band Width 

flat band 

H H H H H H H H
a

W W 

W 

   Dispersive vs flat bands 

dispersive band 

The band width W depends on the overlap between neighboring atoms, i.e. on the 
interatomic distance a.  



Density of States (DOS) 

DOS (E)dE = Number of states (levels), n, between E and E + dE 

n (E) α (δE(k)/δk)-1 
 
NB: The area of the surface delimited by the curve DOS(E) = f(E) is constant when a varies 

a = dH-H short 
Dispersive band 

a = dH-H long 
Flat band 



The Fermi Level (εF) 

Fermi level (εF) (solid)  ≡  HOMO (molecule) 

H H H H H H H H

εF 



The Crystal Orbital Overlap Population (COOP) curve 

Mulliken overlap population vs. energy 

Mulliken overlap population:  

ED (MO):  



More than One Elementary Unit in the Unit Cell: Folding Bands 

H H H H H H H H
a

j direct lattice 

reciprocal lattice " " "" "

0        1         2        3         4 

a* 
a* = 2π/a 

-π/a  0 π/a 

j = 
direct lattice 

reciprocal lattice " " "" "

0        1         2        3         4 

a’* 
a’* = 2π/a’ = π/a 

-π/a’ π/a’ 

H H H H H H H H

a’ = 2a 

"

"

""

"

0                  1                   2 

" "

a’ = 2a 

0 

a = dH-H 



More than One Elementary Unit in the Unit Cell: Folding Bands 

H H H H H H H H

a’ = 2a 
direct lattice 

2 H per unit cell, thus 2 χj orbitals : χj
σ and χj

σ*  

χσ (occupied) 

k = 0 

k = π/a’ = π/2a 

φσ(0) α Σ exp(0) χj
σ  and  φσ *(0) α Σ exp(0) χj

σ*  
                     j                                                    j 

Bloch orbitals in the irreducible part of the first Brillouin zone (0 ≤ k ≤ π/a’): 
  
φ(k) α Σ [exp(ikRj) . χj], with Rj = j.a  and  χj = χj

σ or χj
σ* 

            j 

φσ(π/a’) α Σ exp(iπj) χj
σ  and  φσ *(π/a’ ) α Σ exp(iπj) χj

σ*  
                          j                                                            j 

χσ* (vacant)

a = dH-H 



d'

H H H H H H

More than One Elementary Unit in the Unit Cell: Folding Bands 

a’ = 2dH-H 
a’ 

π/a’ = π/2a 

Crystal Orbital (CO) =  
Linear combination of BO 

Bloch Orbital (BO) 



More than One Elementary Unit in the Unit Cell: Folding Bands 

H H H H H H H H

a’ = 2a 

Band structure: E(k) = f(k) 

a = dH-H 



More than One Elementary Unit in the Unit Cell: Folding Bands 

a 
H H H H H H H H

a’ = 2a 

a = dH-H 



a’ = 2a 

...H-H-H-H-H-H... 

Exercise: Generate the band structure of the double cell (a’ = 2a) by considering 
the interaction between two interpenetrating H networks 

The …H……H… network generates a flat band (very weak overlap 
between red atoms). 
Similarly, the …H……H… network generates a flat band.  
Both flat bands interact and repel each other. 
They interact strongly at k = 0 (S is maximum) 
They do no interact by symmetry at k = π/a’ (S = 0) 
 

π/a’ = π/2a 



The Peierls Distortion 

Peierls distortion (solid)  ≡  Jahn-Teller distortion (molecule) 

a’ 
H H H H

a’ 

H H H H



Metal, Semi-conductor or Insulator? 

   At the ’’atomic’’ level 

   At the macroscopic level (ρ = resistivity) 

kBT εF 
εF 

conduction 
band 

band gap 

valence 
band 

conductor (metal) 

conductor (metal) 
ρ ~ 10-6 Ω.cm 

semi-conductor  
or insulator 

semi-conductor        metal 

semi-conductor (ρ ~ 105 Ω.cm) 
or insulator (ρ ~ 1015 Ω.cm) 

semi-conductor        metal  
(ρ ~ 105 Ω.cm)  (ρ ~ 10-3 Ω.cm) 

ρ (resistivity) inversely proportional to DOS n(e) at εF 



Exercise: Generate the π-type  band structure of a regular zigzag polyacetylene 
chain and show that it is Peierls unstable 

The unit cell  
contains 2  

(not 1) carbon  
atoms 

NB. The Peierls distortion is not associated with a doubling of the unit cell, but 
 with the loss of an helicoidal axis. 



Exercise: Generate the band structure of a chain made of equidistant carbon atoms 

a) Each carbon AO generates a Bloch function. 
b) The σ-type 2s and 2pz Bloch bands interact and strongly repel each other. The resulting σ  
    and σ* bands have no particular shapes and are rather flat. 
c) The π band is doubly degenerate. 

…=C=C=C=C=C…



A chain of equidistant carbon atoms… Peierls Instability… 

px py
px py

C CC C C CC C

!*
!*

!
!

"dimerization"

"F

"F

regular distorted



To summarize 

a)  Identify the repeat unit (unit cell) 
 
b)  Consider the content of the repeat unit as a molecular fragment 
 
c)  Consider the MO diagram of this repeat unit (AOs if single atom). It contains the 

interactions between all the AOs inside one individual unit cell 
 
d)  Generate the Bloch functions developed on each MO. A Bloch function developed on 

one particular χ MO of the unit cell describes the interactions between all the χj  MOs 
of different unit cells 

 
e)  Allow the Bloch orbitals to interact at each k-point if symmetry allows it to get the 

crystal orbitals (CO). The final band structure will arise 



More Dimensions 



Two Dimensions 

H        H        H 
 
H        H        H 
 
H        H        H 

direct lattice reciprocal lattice 

Brillouin zone 

   where  k = (kx, ky) 
            Rj = j1a1 + j2a2 (j1 and j2 = 0, ∞) 
  χj = 1s(H) 

Bloch orbitals:  φ(k) α Σ Σ exp(ikRj) χj        j1  j2 

Square lattice of H atoms 
(1 H per unit cell) 



Two dimensions 

Square lattice of H atoms 
(1 H per unit cell) 

H        H        H 
 
H        H        H 
 
H        H        H 

Bloch orbitals: 



Two dimensions 

Square lattice of H atoms 
(1 H per unit cell) 

H        H        H 
 
H        H        H 
 
H        H        H 

Band structure: E(k) = f(k) 

φ(k)             E(k) 



Three dimensions 

Simple cubic lattice of H atoms 
(1 H per unit cell) 

! M

X K

kx

ky

kz
!

M

X

K

Bloch orbitals 



Three dimensions 

Ni

4s

4p

3d

bulk fcc Ni

!F

Al

4s

4p

bulk fcc Al

!F



Three dimensions 

Bulk fcc Al 



Three dimensions 

Bulk fcc Ni 



More examples: graphite and diamond 

  

E

 L             !              X

"F

DOS

kx

ky
!

L

X

kz

  

E

M        K         !         M

"F

DOS

kx

ky

!

M

K

#

#
$

Graphite (graphene) (2-D) 
DOS = 0 at εF and only at this point 
Semi-metal 

Diamond (3-D) 
Large forbidden energy gap above εF 
Insulator 

BZ

BZ



Partially Filled Bands: The Fermi Surface 



Partially Filled Bands: The Fermi Surface 

H        H        H 
 
 
H        H        H 
 
 
H        H        H 

Rectangular lattice of H atoms 
(1 H per unit cell) a 

b 

direct lattice Brilouin zone 
(reciprocal lattice) 

(0, 0) 
(π/a, 0) 

(π/a, π/b) (0, π/b) 

Construction of BOs, φ(k)              Band structure, E(k) = f(k) 



Partially Filled Bands: The Fermi Surface 

H        H        H 
 
 
H        H        H 
 
 
H        H        H 

Rectangular lattice of H atoms 
(1 H per unit cell) 

a 

b 

Brilouin zone 

(0, 0) 
(π/a, 0) 

(π/a, π/b) (0, π/b) 

Band structure, E(k) = f(k) 
(if no interaction along b axis) 

βa βb 

ja  0          1          2 
0 
 
 
1 
 
 
2 

jb  

βa and βb: resonance integrals 
                  (transfer integrals) 

βa = <χja│Heff │χja+1> 
 
βb = <χjb│Heff │χjb+1> 

εF 



Partially Filled Bands: The Fermi Surface 

H        H        H 
 
 
H        H        H 
 
 
H        H        H 

a 

b 

Partially filled bands            Fermi surface 

βa βb 
βa and βb: resonance integrals 
                  (transfer integrals) 

βa = <χja│Heff │χja+1> 
 
βb = <χjb│Heff │χjb+1> 

εF 

Rectangular lattice of H atoms 
(1 H per unit cell) 

Fermi surface: boundary surface separating 
the “occupied” and “unoccupied” wave vectors: 
a point (1D), a line (2D) or a surface (3D) 

Fermi surface (line) (kF) 
M 



Partially Filled Bands: The Fermi Surface 

H        H        H 
 
 
H        H        H 

a 

b 

Band structures and Fermi surfaces 

βa βb 
βa = <χja│Heff │χja+1> 
 
βb = <χjb│Heff │χjb+1> 

εF 

Rectangular lattice of H atoms 
(1 H per unit cell) 

εF εF 

M M M 



1D metal 
(along a axis) 

pseudo-1D metal 
(along a axis) 

2D (anisotropic) metal 
(along a+b and a-b axis) 

Partially Filled Bands: The Fermi Surface 

Fermi surfaces explain the dimensionality of metallic properties 

2D (isotropic) metal 
(close loop) 



Partially Filled Bands: The Fermi Surface 

Fermi surfaces explain distortions in solids due to electronic instabilities  
(concept of Fermi surface nesting) 

A Fermi surface is nested by a vector q when a section can be 
moved by such a vector to be superimposed on another section 

A metallic system with a nested Fermi surface is subject to a metal-insulator phase transition 
(interaction of occupied and vacant crystal orbitals of same symmetry of E = E(kF) related by q)   
 
If complete         destruction of the Fermi surface 
 
If uncomplete         Fermi surface with hole and/or electron pockets 
  



Computational Aspects 



Computational Aspects 

   Quantum chemical methods 

There are different ways to solve the Schrödinger equation 
for periodic systems 

Crystal orbitals Ψn(k) 



SCHRÖDINGER EQUATION 
HΨ = EΨ 

HARTREE-FOCK DENSITY FUNCTIONAL 
THEORY 

ROOTHAN 

SEMI-EMPIRICAL 
MODELS: 

AM1, PM3, CNDO, 
INDO, MNDO… 

AB INITIO 
SCF 

MCSCF, CI, CC  
MPn/MBPT... 

Ψ(r) ρ(r)Born-Oppenheimer approximation 

LCAO approximation 

approximation 
on Hamiltonian 

treatment of 
correlation 

Hohenberg-Kohn theorems 

Kohn-Sham (KS) development 

orbital approximation 

HÜCKEL, 
EHT, 

EH-TB4 
KS-LDA(LSD) METHODS 

non-LCAO LCAO Mixed 

PW-PP1, APW  
OPW, LMTO2, 

MS-Xα…

FP-LAPW3 LCGTO-LSD, 
FPLO, KKR… 

treatment of 
exchange-correlation 

KS NON-LDA (GGA) 
METHODS: 

BP86, B3LYP, PBE... 

treatment of 
excited states 

TD-DFT
1VASP, 2LMTO-ASA, 3WIEN-2k, 4Yaehmop 

LCAO approximation 



Computational Aspects 

   Band dispersion relation, E(k) = f(k) 

Crystal orbitals Ψn(k)          en(k) 
for specific k wave vectors along symmetry lines 

of the irreducible part of Brillouin zone 

one band two bands with 
different symmetry 

two bands with 
identical symmetry 

Brillouin zone 



Computational Aspects 

Brillouin zone 

M crystal orbitals Ψn(k)          en(k) 
for L k wave vectors “inside” the irreducible part of Brillouin zone (sampling) 

two sets of 10 k “points” of weight wi 

Total DOS:  

Total electronic energy of the system:  

   Density of states, Fermi level, and electronic energy 

Fermi level:  (e-/unit cell) emax = eF 



Computational Aspects 

   Fermi surface 

2D square system 

Brillouin zone 

M crystal orbitals Ψn(k)          en(k) 
for L k wave vectors “inside” the irreducible part of Brillouin zone 

mesh of L k “points” 

en(ki)           en(kF) = eF (constant energy surface) 



The Theoretical Machinery at Work… 



Application to the Texbook Example of TTF-TCNQ, 
the First Organic Molecular Metal 

Tetracyanoquinomethane 
(TCNQ) 

Tetrathiafulvalene 
(TTF) 

3.47 Å 

3.17 Å 



The Texbook Example of TTF-TCNQ  

TTF-TCNQ: A truly organic molecular metal 
 

σ ~ 5.103 Ω-1.cm-1 at 80 K (-210 °C)   (106 for Cu) 
 

What’s special for TTF-TCNQ? 



The Texbook Example of TTF-TCNQ  

TCNQ: A good acceptor 

Tetracyanoquinomethane 
(TCNQ) - 16 π e- 

Some EHMO energy levels and 
MO symmetries for TCNQ. 

LUMO (π-type) 

weakly antibonding 
LUMO (π-type) acceptor character TCNQ- 

εF 

conductor 
(metal) 

TCNQ- 

(TCNQ-)∞ 

εF 

semi-conductor 
[(TCNQ-)2]∞ 

or alternatively, if U (e--e- repulsion) > W (bandwith) 

εF 

conductor 
(metal) 

TCNQ- 

(TCNQ-)∞ 

εF 

magnetic 
insulator 

(TCNQ-)∞ 

(structural change upon reduction) 

d 

d’ 

d 

J. P. Lowe, J. Am. Chem. Soc. 1980, 102, 1262 



The Texbook Example of TTF-TCNQ  

TTF: A good donor 

Some EHMO energy levels and 
MO symmetries for TTF. 

HOMO (π-type) 

weakly bonding 
HOMO (π-type) donor character TTF+ 

or alternatively, if U (e--e- repulsion) > W (bandwith) 

εF 

conductor 
(metal) 

TTF+ 

(TTF+)∞ 

εF 

magnetic 
insulator 

(TTF+)∞ 

Tetrathiafulvalene (TTF) - 14 π e- 

(structural change upon oxidation) 

d 

d’ 

d 

εF 

conductor 
(metal) 

TTF+ 

(TTF+)∞ 

εF 

semi-conductor 
[(TTF+)2]∞ 

J. P. Lowe, J. Am. Chem. Soc. 1980, 102, 1262 



The Texbook Example of TTF-TCNQ  

TCNQ salts are generally semi-conductors 
 
 
Na(TCNQ)   (TCNQ2)2- dimers 
 
 
 
K(TCNQ)  (TCNQ2)2- dimers 
 
 
 
Cs2(TCNQ)  (TCNQ3)2- trimers 
 
 
 
NEt4(TCNQ)2  (TCNQ4)- tetramers 

TTF salts as well… 

d 

d’ 

d 

d’ 

d 

d’ 

d’ 

d 



The Electronic Structure of TTF-TCNQ  

What’s special for TTF-TCNQ? 

The TTF and TCNQ bands overlap at the Fermi level (1D metal) 

DFT band structure (two TCNQ and two TTF molecules per unit cell): 

M. Sing, Phys. Rev. B. 2003, 68, 125111 



The Electronic Structure of TTF-TCNQ  

εF 

TTF+ 

(TTF+)∞ 

What’s special for TTF-TCNQ? 

No distortion (at room temperature) 

 TTF-TCNQ is a 1D metal 

TCNQ- 

(TCNQ-)∞ 

(TTFδ+-TCNQδ-)∞ 
δ < 1

TTF+ 

TCNQ- 

The TTF and TCNQ bands overlap at the Fermi level 



Examples of Molecular Materials and their Electronic Structure  

The superconductor κ-(ET)2Cu(NCS)2 (Tc = 11 K) 

S

S

S

S

S

SS

S

BEDT-TTF (ET) 

Calculated Fermi surface (top), energy dispersion 
(bottom left) and density of states D(ε) (bottom right) 
of the organic network of κ-(ET)2Cu(NCS)2  

… An extensive work to shift the Fermi level by 
replacing part of Cu(I) with Cu(II) has so far been 
unsuccessful for κ-(ET)2Cu(NCS)2, however, 
successful in a very limited range in κ-(ET)2(CuI

2-

x-yCuII
x){(CN)3-2y[N(CN)2]y} [24]. A uni-axial strain 

of 1 kbar applied along the c-axis of κ-
(ET)2Cu(NCS)2 increases Tc by 1 K [25] owing to 
the much flattened 1D like Fermi surface under 
pressure as expected from the band calculation 
giving rise to an enhancement of electron 
correlation. A uni-axial strain along the b-axis 
monotonically decreases Tc, probably due to the 
increase of the bandwidth and hence the decrease 
of D(εF).  



Electronic Structure of the Superconductor κ-(ET)2Cu(NCS)2  

S

S

S

S

S

SS

S

BEDT-TTF (ET) 

Calculated Fermi surface (top), energy dispersion (bottom left) and density of 
states D(ε) (bottom right) of the organic network of κ-(ET)2Cu(NCS)2  

HOMO of BEDT-TTF 

HOMO of TTF 

Molecular arrangement of ET molecules 

4 molecules per unit cell 

4 HOMOs (basis set) 

4 crystal orbitals (k) 

4 bands (E(k)) 

metal character 

degenerate bands 

two pieces 
open Fermi 

surface 
(closed with I3)  



(BEDO-TTF)5(HCP)(PhCN)0.2 

Calculated band structures, density of states (DOS), and 
Fermi surface of (d) (BEDO-TTF)5(HCP)(PhCN)0.2. The 
nesting vector q is represented by arrows in d. 

Electronic Structure of some (BEDO-TTF) Complexes  

HOMO of BEDO-TTF 

metal character two pieces 

Two Fermi surfaces superposed to each other by translation 
vector q = 3/5 b*(q = k - k’ (k = 0.3 π/b)) (arrows in Figure). 
This nesting of the Fermi surface (often seen in the 
quasi-1D materials) typically causes a CDW- or SDW-
associated metal-insulator transition. 

open Fermi 
surface 

k’ 

k 

4 BEDO-TTF per unit cell 



(BEDO-TTF)10(CF)4(H2O)3 (BEDOTTF)5(HCTMM)(PhCN)2 

(BEDO-TTF)4(SQA)(H2O)6 

Calculated band structures, densities of states (DOS), and Fermi surfaces of (a) (BEDO-TTF)10(CF)4(H2O)3, 
(b) (BEDO-TTF)5(HCTMM)(PhCN)2, and (c) (BEDO-TTF)4(SQA)(H2O)6. 

Electronic Structure of some (BEDO-TTF) Complexes  

2D-metals 

hole pocket around X (band nearly empty) 
electron pockets around B and Z (band nearly 
full) 



Science 2005, 307, 86-89  

Home Work: What is the Band Structure of (EDO-TTF)2PF6? 



Home Work: What is the Band Structure of (EDO-TTF)2PF6? 

Expected band structure (four EDO-TTF molecules per unit cell): 

0         k        π/a’ 

E 

εF 

0         k        π/a’’ 

E 

εF ≡  ≡  
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